
DIY Deep Learning for Vision:
a Hands-On Tutorial with Caffe

Evan Shelhamer, Jeff Donahue, Jon Long,
Yangqing Jia, and Ross Girshick

caffe.berkeleyvision.org

github.com/BVLC/caffe

Look for further
details in the
outline notes

http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe

Tutorial Schedule
Caffe tour and latest roast

Caffe Tour
- the why and how of Caffe
- highlight reel of examples + applications
- do-it-yourself notebooks

Latest Roast
- detection Ross Girshick
- sequences and vision + language Jeff Donahue
- pixelwise prediction Jon Long and Evan Shelhamer
- framework future Yangqing Jia

http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-sequences.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-pixels.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-improving.pdf

Why Deep Learning?
End-to-End Learning for Many Tasks

What is Deep Learning?

Compositional Models
Learned End-to-End

Hierarchy of Representations
- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word

concrete abstract
learning

figure credit Yann LeCun, ICML ‘13 tutorial

What is Deep Learning?

Compositional Models
Learned End-to-End

figure credit Yann LeCun, ICML ‘13 tutorial

Back-propagation jointly learns
all of the model parameters to
optimize the output for the task.

http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/

All in a day’s work with Caffe

http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/

What is Caffe?

Prototype Train Deploy

Open framework, models, and worked examples
for deep learning
‑ 4.5 years old
‑ 7,000+ citations, 250+ contributors, 24,000+ stars
‑ 15,000+ forks, >1 pull request / day average at peak
‑ focus has been vision, but also handles

sequences, reinforcement learning, speech + text

9

What is Caffe?

Prototype Train Deploy

Open framework, models, and worked examples
for deep learning
‑ Pure C++ / CUDA library for deep learning
‑ Command line, Python, MATLAB interfaces
‑ Fast, well-tested code
‑ Tools, reference models, demos, and recipes
‑ Seamless switch between CPU and GPU

10

Caffe is a Community project pulse

11

https://github.com/BVLC/caffe/pulse/monthly

Caffe offers the
● model definitions
● optimization settings
● pre-trained weights
so you can start right away.

The BVLC models are
licensed for unrestricted use.

The community shares
models in our Model Zoo.

Reference Models

GoogLeNet: ILSVRC14 winner

https://github.com/BVLC/caffe/wiki/Model-Zoo

The Caffe Model Zoo open collection of deep models to share innovation

- MSRA ResNet ILSVRC15 winner in the zoo
- VGG ILSVRC14 + Devil models in the zoo
- MIT Places scene recognition model in the zoo
- Network-in-Network / CCCP model in the zoo

helps disseminate and reproduce research
bundled tools for loading and publishing models
Share Your Models! with your citation + license of course

Open Model Collection

13

https://github.com/BVLC/caffe/wiki/Model-Zoo

Brewing by the Numbers...
Speed with Krizhevsky's 2012 model:

‑ 2 ms/image on K40 GPU

‑ <1 ms inference with Caffe + cuDNN v4 on Titan X

‑ 72 million images/day with batched IO

‑ 8-core CPU: ~20 ms/image Intel optimization in progress

9k lines of C++ code (20k with tests)

14

CAFFE
EXAMPLES + APPLICATIONS

Share a Sip of Brewed Models
demo.caffe.berkeleyvision.org

demo code open-source and bundled

http://demo.caffe.berkeleyvision.org/

Scene Recognition

B. Zhou et al. NIPS 14

http://places.csail.mit.edu/

Visual Style Recognition

Other Styles:

Vintage
Long Exposure
Noir
Pastel
Macro
… and so on.

Karayev et al. Recognizing Image Style. BMVC14. Caffe fine-tuning example.
Demo online at http://demo.vislab.berkeleyvision.org/ (see Results Explorer).

[Image-Style]

http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/

Fast R-CNN
- convolve once
- project + detect

Ross Girshick, Shaoqing Ren,
Kaiming He, Jian Sun

Faster R-CNN
- end-to-end proposals and detection
- image inference in 200 ms
- Region Proposal Net + Fast R-CNN

papers + code online

R-CNNs: Region-based Convolutional Networks

Object Detection

https://github.com/rbgirshick/fast-rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://arxiv.org/pdf/1504.08083v1.pdf

Fully convolutional networks for pixel prediction
in particular semantic segmentation

- end-to-end learning
- efficient inference and learning

100 ms per-image prediction
- multi-modal, multi-task

Pixelwise Prediction

Applications
- semantic segmentation
- denoising
- depth estimation
- optical flow

Jon Long* & Evan Shelhamer*,
Trevor Darrell. CVPR’15CVPR'15 paper and code + models 20

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
http://fcn.berkeleyvision.org

Visual Sequence Tasks

Jeff Donahue et al. CVPR’15 21

Recurrent Nets and Long Short Term Memories (LSTM)
are sequential models

- video
- language
- dynamics

learned by backpropagation through time

Recurrent Networks for Sequences

LRCN: Long-term Recurrent Convolutional Network
- activity recognition (sequence-in)
- image captioning (sequence-out)
- video captioning (sequence-to-sequence)

22

LRCN:
recurrent + convolutional
for visual sequences

CVPR'15 paper and code + models

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
http://jeffdonahue.com/lrcn/

Deep Visuomotor Control

Sergey Levine* & Chelsea Finn*,
Trevor Darrell, and Pieter Abbeel

example experiments feature visualization

23

http://www.youtube.com/watch?v=oTfGzObMqQI
http://www.youtube.com/watch?v=RgQEA9LFWjQ

Deep Visuomotor Control Architecture

Sergey Levine* & Chelsea Finn*,
Trevor Darrell, and Pieter Abbeel

- multimodal (images & robot configuration)

- runs at 20 Hz - mixed GPU & CPU
for real-time control

paper + code for guided policy search 24

http://arxiv.org/abs/1504.00702
http://rll.berkeley.edu/gps/

Embedded Caffe

- same model weights,
same framework interface

- out-of-the-box on
CUDA platforms

- in-progress OpenCL port
thanks Fabian Tschopp!
+ AMD, Intel, and the community

- community Android port
thanks sh1r0!

25

CUDA Jetson TX1, TK1

Android lib, demo

OpenCL branch

Caffe runs on embedded CUDA hardware and mobile devices

http://www.nvidia.com/object/jetson-tx1-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://github.com/sh1r0/caffe-android-lib
https://github.com/sh1r0/caffe-android-demo
https://github.com/BVLC/caffe/tree/opencl

Caffeinated Companies

26

… startups, big companies, more ...

- in production for vision at scale:
uploaded photos run through Caffe

- Automatic Alt Text for the blind

- On This Day for surfacing memories

- objectionable content detection

- contributing back to the community:
inference tuning, tools, code review
include fb-caffe-exts thanks Andrew!

Caffe at Facebook

27

Automatic Alt Text
recognize photo content

for accessibility

[example credit Facebook]

On This Day
highlight content

https://github.com/facebook/fb-caffe-exts

Caffe at Pinterest

28

- in production for vision at scale:
uploaded photos run through Caffe

- deep learning for visual search:
retrieval over billions of images
in <250 ms

- ~4 million requests/day

- built on an open platform of
Caffe, FLANN, Thrift, ...

[example credit Andrew Zhai, Pinterest]

Caffe at Adobe

29

- training networks for research
in vision and graphics

- custom inference in products,
including Photoshop

Photoshop Type Similarity
catalogue typefaces automatically

Caffe at Yahoo! Japan

30

- curate news and restaurant
photos for recommendation

- arrange user photo albums

News Image Recommendation
select and crop images for news

Classification
instant recognition the Caffe way

see notebook

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb

Convolutional Network

Convolutional Networks: 1989

LeNet: a layered model composed of convolution and
subsampling operations followed by a holistic representation
and ultimately a classifier for handwritten digits. [LeNet]

Convolutional Nets: 2012

AlexNet: a layered model composed of convolution,
subsampling, and further operations followed by a holistic
representation and all-in-all a landmark classifier on
ILSVRC12. [AlexNet]

+ data
+ gpu
+ non-saturating nonlinearity
+ regularization

Convolutional Nets: 2014

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-scale

dimension-reduced modules (pictured)
- VGG: 16 layers of 3x3 convolution interleaved with

max pooling + 3 fully-connected layers

+ depth
+ data
+ dimensionality reduction

Learning LeNet
back to the future of visual recognition

see notebook

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipynb

Deep Learning, as it is executed...

What should a framework handle?

Compositional Models
Decompose the problem and code!

End-to-End Learning
Configure and solve!

Many Architectures and Tasks
Define, experiment, and extend!

Net

name: "dummy-net"

layer { name: "data" …}

layer { name: "conv" …}

layer { name: "pool" …}

 … more layers …

layer { name: "loss" …}

● A network is a set of layers
and their connections:

LogReg ↑

LeNet →

ImageNet, Krizhevsky 2012 →

● Caffe creates and checks the net from
the definition.

● Data and derivatives flow through the
net as blobs – an array interface

Forward / Backward the essential Net computations

Caffe models are complete machine learning systems for inference and learning.
The computation follows from the model definition. Define the model and run.

DAG
Many current deep models
have linear structure

but Caffe nets can have any
directed acyclic graph (DAG)
structure.

Define bottoms and tops
and Caffe will connect the net. LRCN joint vision-sequence model

GoogLeNet Inception Module

SDS two-stream net

Setup: run once for initialization.

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Reshape: set dimensions.

Layer Protocol

Layer Development Checklist

Compositional Modeling
The Net’s forward and backward passes
are composed of the layers’ steps.

https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers

Layer Protocol
== Class Interface
Define a class in C++ or Python to
extend Layer.

Include your new layer type in a
network and keep brewing.

layer {
type: "Python"
python_param {
 module: "layers"
 layer: "EuclideanLoss"
} }

Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Blobs are N-D arrays for storing and
communicating information.
● hold data, derivatives, and parameters
● lazily allocate memory
● shuttle between CPU and GPU

Blob
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
… definition …

top
blob

bottom
blob

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution Bias
96 x 1 x 1 x 1 for CaffeNet conv1

Blobs provide a unified memory interface.

Reshape(num, channel, height, width)
- declare dimensions
- make SyncedMem -- but only lazily
allocate

Blob

cpu_data(), mutable_cpu_data()
- host memory for CPU mode
gpu_data(), mutable_gpu_data()
- device memory for GPU mode

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()
- derivative counterparts to data methods
- easy access to data + diff in forward / backward

SyncedMem
allocation + communication

Classification
SoftmaxWithLoss
HingeLoss

Linear Regression
EuclideanLoss

Attributes / Multiclassification
SigmoidCrossEntropyLoss

Others…

New Task
NewLoss

Loss

What kind of model is this?

Define the task by the loss.

loss (LOSS_TYPE)

message ConvolutionParameter {

 // The number of outputs for the layer

 optional uint32 num_output = 1;

 // whether to have bias terms

 optional bool bias_term = 2 [default = true];

}

name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
}

- Strongly typed format
- Auto-generates code
- Developed by Google
- Defines Net / Layer / Solver

schemas in caffe.proto

Protobuf Model Format

Model Zoo Format

Gists on github hold model definition, license, url for weights, and
hash of Caffe commit that guarantees compatibility.

Solving: Training a Net
Optimization like model definition is configuration.
train_net: "lenet_train.prototxt"

base_lr: 0.01

momentum: 0.9

weight_decay: 0.0005

max_iter: 10000

snapshot_prefix: "lenet_snapshot"
All you need to run things
on the GPU.

> caffe train -solver lenet_solver.prototxt -gpu 0

Stochastic Gradient Descent (SGD) + momentum ·
Adaptive Gradient (ADAGRAD) · Nesterov’s Accelerated Gradient (NAG)

I0901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627

I0901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217

I0901 13:36:33.019356 24952 solver.cpp:302] Test net output #0: cross_entropy_loss = 63.217 (* 1 = 63.217 loss)

I0901 13:36:33.019773 24952 solver.cpp:302] Test net output #1: l2_error = 2.40951

AdaGrad

SGD

Nesterov

I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498

I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301

I0901 13:35:22.780138 20072 solver.cpp:302] Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss)

I0901 13:35:22.780146 20072 solver.cpp:302] Test net output #1: l2_error = 2.02321

I0901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389

I0901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663

I0901 13:36:55.068410 22488 solver.cpp:302] Test net output #0: cross_entropy_loss = 59.3663 (* 1 = 59.3663 loss)

I0901 13:36:55.068418 22488 solver.cpp:302] Test net output #1: l2_error = 1.79998

Solver Showdown: MNIST Autoencoder

Weight Sharing

● Just give the parameter
blobs explicit names
using the param field

● Layers specifying the
same param name will
share that parameter,
accumulating gradients
accordingly

layer: {
 name: 'innerproduct1'
 type: INNER_PRODUCT
 inner_product_param {
 num_output: 10
 bias_term: false
 weight_filler {
 type: 'gaussian'
 std: 10
 }
 }
 param: 'sharedweights'
 bottom: 'data'
 top: 'innerproduct1'
}
layer: {
 name: 'innerproduct2'
 type: INNER_PRODUCT
 inner_product_param {
 num_output: 10
 bias_term: false
 }
 param: 'sharedweights'
 bottom: 'data'
 top: 'innerproduct2'
}

Recipe for Brewing

● Convert the data to Caffe-format
○ lmdb, leveldb, hdf5 / .mat, list of images, etc.

● Define the Net
● Configure the Solver
● caffe train -solver solver.prototxt -gpu 0

● Examples are your friends
○ caffe/examples/mnist,cifar10,imagenet
○ caffe/examples/*.ipynb
○ caffe/models/*

Brewing Models
from logistic regression to non-linearity

see notebook

http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/brewing-logreg.ipynb

Dogs vs.
Cats
top 10 in
10 minutes

Take a pre-trained model and fine-tune to new tasks
[DeCAF] [Zeiler-Fergus] [OverFeat]

© kaggle.com

Your Task

Style
Recognition

Lots of Data

ImageNet

image by Andrej Karpathy

layer {
 name: "data"
 type: "Data"
 data_param {
 source: "ilsvrc12_train_lmdb"
 mean_file: "../../data/ilsvrc12"
 ...
 }
 ...
}
...
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 ...
 }
}

layer {
 name: "data"
 type: "Data"
 data_param {
 source: "style_train_lmdb"
 mean_file: "../../data/ilsvrc12"
 ...
 }
 ...
}
...
layer {
 name: "fc8-style"
 type: "InnerProduct"
 inner_product_param {
 num_output: 20
 ...
 }
}

From ImageNet to Style

Simply change a few lines in the model definition

Input:
A different source

Last Layer:
A different classifier

new name =
new params

> caffe train -solver models/finetune_flickr_style/solver.prototxt

 -weights bvlc_reference_caffenet.caffemodel

Step-by-step in pycaffe:
 pretrained_net = caffe.Net(
 "net.prototxt", "net.caffemodel")

 solver = caffe.SGDSolver("solver.prototxt")

 solver.net.copy_from(pretrained_net)

 solver.solve()

From ImageNet to Style

Fine-tuning
transferring features to style recognition

see notebook

http://nbviewer.ipython.org/github/BVLC/caffe/blob/tutorial/examples/03-fine-tuning.ipynb

When to Fine-tune?
A good first step
- More robust optimization – good initialization helps
- Needs less data
- Faster learning

State-of-the-art results in
- recognition
- detection
- segmentation

[Zeiler-Fergus]

Learn the last layer first
- Caffe layers have local learning rates: param { lr_mult: 1 }
- Freeze all but the last layer for fast optimization

and avoiding early divergence by setting lr_mult: 0
to fix a parameter.

- Stop if good enough, or keep fine-tuning

Reduce the learning rate
- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid divergence

Do net surgery see notebook on editing model parameters

Fine-tuning Tricks

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb

Transferability of Features
Yosinski et al. NIPS 2014

After fine-tuning
- Supervised pre-training does not overfit
- Representation is (mostly) distributed
- Sparsity comes “for free” in deep representation

P. Agarwal et al. ECCV 14

Editing model parameters
how to do net surgery to set custom weights

see notebook

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb

Up Next The Latest Roast

Pixelwise PredictionDetection

Sequences
Framework Future

http://fcn.berkeleyvision.org
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-sequences.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-improving.pdf

Fast R-CNN
- convolve once
- project + detect

Detection

Ross Girshick, Shaoqing Ren,
Kaiming He, Jian Sun

Faster R-CNN
- end-to-end proposals and detection
- 200 ms / image inference
- fully convolutional Region Proposal Net

+ Fast R-CNN
arXiv and code for Fast R-CNN

http://arxiv.org/abs/1504.08083
https://github.com/rbgirshick/fast-rcnn

Fully convolutional networks for pixel prediction
applied to semantic segmentation

- end-to-end learning
- efficient inference and learning

150 ms per-image prediction
- multi-modal, multi-task

Pixelwise Prediction

Further applications
- depth
- boundaries
- flow + more

Jon Long* & Evan Shelhamer*,
Trevor Darrell

CVPR15 arXiv and reference models + code

http://arxiv.org/abs/1411.4038
http://fcn.berkeleyvision.org

Recurrent Net and Long Short Term Memory LSTM
are sequential models

- video
- language
- dynamics

learned by backpropagation through time.

Sequences

Jeff Donahue et al.

LRCN: Long-term Recurrent Convolutional Network
- activity recognition
- image captioning
- video captioning

CVPR15 arXiv and project site

http://arxiv.org/abs/1411.4389
http://jeffdonahue.com/lrcn/

Framework Future

1.0 is coming stability, documentation, packaging

Performance Tuning for GPU (cuDNN v5) and CPU (nnpack)

In-progress Ports for OpenCL and Windows

Halide interface for prototyping and experimenting

Widening the Circle continued and closer collaborative development
66

Join the caffe-users mailing list

Next Steps

67

Now you’ve seen the progress made with
DIY deep learning and the democratization of models

Next Up:

caffe.berkeleyvision.org

github.com/BVLC/caffe

Check out Caffe on github
Run Caffe through Docker

and NVIDIA Docker for GPU

https://groups.google.com/forum/#!forum/caffe-users
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/tree/master/docker

Documentation
‑ tutorial documentation

‑ hands-on examples

Modeling, Usage, and
Installation
‑ caffe-users group

‑ gitter.im chat

Convolutional Nets
‑ CS231n online convnet class

by Andrej Karpathy and
Fei-Fei Li

‑ Deep Learning Online
by Michael Nielsen

‑ Deep Learning Book
by Goodfellow, Bengio,
Courville

Help Brewing

68

http://caffe.berkeleyvision.org/tutorial/
http://caffe.berkeleyvision.org/#notebook-examples
https://groups.google.com/forum/#!forum/caffe-users
https://gitter.im/BVLC/caffe
http://vision.stanford.edu/teaching/cs231n/index.html
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Jonathan Long,
Sergey Karayev, Ross Girshick, Sergio Guadarrama, Ronghang Hu, Trevor Darrell

Thanks to the Caffe Crew

and our open source contributors!
69

...plus the cold-brew

https://github.com/BVLC/caffe/graphs/contributors

Acknowledgements

Thank you to the Berkeley Vision and Learning Center and its Sponsors

Thank you to NVIDIA
for GPUs, cuDNN collaboration,
and hands-on cloud instances

Thank you to our 150+
open source contributors
and vibrant community!

Thank you to A9 and AWS
for a research grant for Caffe dev
and reproducible research

70

References
[DeCAF] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep
convolutional activation feature for generic visual recognition. ICML, 2014.

[R-CNN] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. CVPR, 2014.

[Zeiler-Fergus] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. ECCV, 2014.

[LeNet] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. IEEE, 1998.

[AlexNet] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. NIPS, 2012.

[OverFeat] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional networks. ICLR, 2014.

[Image-Style] S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertzmann, H. Winnemoeller.
Recognizing Image Style. BMVC, 2014.

[Karpathy14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. CVPR, 2014.

[Sutskever13] I. Sutskever. Training Recurrent Neural Networks.
PhD thesis, University of Toronto, 2013.
[Chopra05] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to
face verification. CVPR, 2005.

http://sergeykarayev.com/
http://matttrent.com/
http://helenhan.me/
http://www.agarwala.org/
http://www.eecs.berkeley.edu/~trevor/
http://www.dgp.toronto.edu/~hertzman/
http://www.adobe.com/technology/people/seattle/holger-winnemoeller.html

END

MORE DETAILS

Why Deep Learning?
The Unreasonable Effectiveness of Deep Features

Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]

Why Deep Learning?
The Unreasonable Effectiveness of Deep Features

Rich visual structure of features deep in hierarchy.

[R-CNN]

[Zeiler-Fergus]

Maximal activations of pool5 units

conv5 DeConv visualization

Why Deep Learning?
The Unreasonable Effectiveness of Deep Features

[Zeiler-Fergus]

1st layer filters

image patches that strongly activate 1st layer filters

