DIY Deep Learning for Vision:
a Hands-On Tutorial with Caffe
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http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe

Tutorial Schedule
Caffe tour and latest roast

Caffe Tour

- the why and how of Caffe
- highlight reel of examples + applications
- do-it-yourself notebooks

Latest Roast

- detection Ross Girshick

- sequences and vision + language Jeff Donahue

- pixelwise prediction Jon Long and Evan Shelhamer
- framework future Yangqing Jia



http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-sequences.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-pixels.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-improving.pdf

Why Deep Learning?
End-to-End Learning for Many Tasks
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What is Deep Learning?

Energy
C(Xn, Y)
Compositional Models ‘
Learned End-to-End — Fn«*n-'*-wm
Xn-1 :
Hierarchy of Representations e o
- vision: pixel, motif, part, object F':‘_':’i'w"
- text: character, word, clause, sentence |
- speech: audio, band, phone, word o
Wi = F1(X0, W1)
————)  3bstract ol danired
Concrete |ea rn | ng input X output Y

figure credit Yann LeCun, ICML ‘13 tutorial



What is Deep Learning?

Compositional Models
Learned End-to-End

Back-propagation jointly learns
all of the model parameters to
optimize the output for the task.
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figure credit Yann LeCun, ICML ‘13 tutorial



WHEN A USER TAKES A PHOTD
THE. APP SHOULD CHECK WHETHER
THEY'RE IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKLR
GIMME A FEW HOUR’S.

.. AND CHECK WHETHER
TI-E PHOTD 1S OF A BIRD.

ILLNEEDA%SEHRCH

=

IN CS, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE..

xkcd: Tasks

“The Virtually Impossible”



Photo credits

PARK or BIRD

Want to know if your photo is from a U.S. national park?
Want to know if it contains a bird? Just drag it into the box
to the left, and we'll tell you. We'll use the GPS embedded
in your photo (if it's there) to see whether it's from a park,
and we'll use our super-cool computer vision skills to try to
see whether it's a bird (which is a hard problem, but we do
a pretty good job at it).

To try it out, just drag any photo from your desktop into the
upload box, or try dragging any of our example images.
We'll give you your answers below!

Want to know more about PARK or BIRD, including why
the heck we did this? Just click here for more info = ©

PARKY  BIRD?

YES YES

Ah yes, Everglades is truly Dude, that is such a bird.
beautiful.
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All in a day’s work with Caffe

http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/



http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/

What is Caffe?

Open framework, models, and worked examples
for deep learning

4.5 years old

7,000+ citations, 250+ contributors, 24,000+ stars
15,000+ forks, >1 pull request / day average at peak
focus has been vision, but also handles

sequences, reinforcement learning, speech + text

Prototype Train



What is Caffe?

Open framework, models, and worked examples
for deep learning

- Pure C++ / CUDA library for deep learning

- Command line, Python, MATLAB interfaces
- Fast, well-tested code

- Tools, reference models, demos, and recipes
- Seamless switch between CPU and GPU

Prototype Train

10



Caffe is a Community project pulse

- BVLC / caffe @ Unwatch~ 1205 Y Unstar gae8 ¥ Fork 4821
January 19, 2016 - February 19, 2016 Period: 1 month ~
Overview
45 Active Pull Requests 90 Active Issues
na2 v 23 © 52 () 38
Merged Pull Requests Proposed Pull Requests Closed Issues New Issues

Excluding merges, 20 authors have pushed 19 commits to
master and 53 commits to all branches. On master, 44 files
have changed and there have been 2,268 additions and 162
deletions.

1


https://github.com/BVLC/caffe/pulse/monthly

Reference Models

AlexNet: ImageNet Classification

Caffe offers the

e model definitions

e optimization settings
e pre-trained weights

......

......

R-CNN: Regions with CNN features SO yOu Can start rlg ht away.
m SRR The BVLC models are
1. Input 2. Extract region 3. Compute 4. Classify . .
mage  proposals (-2k)  CNNfeatures regions licensed for unrestricted use.
GoogLeNet: ILSVRC14 winner '
g A 8 pde BgRige. 0 :
BRI R e The community shares
| mﬂ .
”“””ggﬂggwggﬂég AL Y models in our Model Zoo.


https://github.com/BVLC/caffe/wiki/Model-Zoo

Open Model Collection

The Caffe Model Z00 open collection of deep models to share innovation

MSRA ResNet ILSVRC15 winner in the zoo
VGG ILSVRC14 + Devil models in the zoo
MIT Places scene recognition model in the zoo
Network-in-Network / CCCP model in the zoo

helps disseminate and reproduce research
bundled tools for loading and publishing models

Share Your Models! with your citation + license of course
13


https://github.com/BVLC/caffe/wiki/Model-Zoo

Brewing by the Numbers...
Speed with Krizhevsky's 2012 model:
- 2 ms/image on K40 GPU

- <1 ms inference with Caffe + CuUDNN v4 on Titan X
- 72 million images/day with batched 10

- 8-core CPU: ~20 ms/image Intel optimization in progress

9k lines of C++ code (20k with tests)

®C++ ® Python 10. Cuda Other

14



CAFFE
EXAMPLES + APPLICATIONS



Share a Sip of Brewed Models

demo.caffe.berkeleyvision.org

demo code open-source and bundled

‘ Maximally accurate Maximally specific
cat [ 1.80727 ]
domestic cat
feline
tabby

domestic animal 0.78542


http://demo.caffe.berkeleyvision.org/

Scene Recognition nipplaces csailmitedu

4

‘\'\\\\\\\\\.\\\‘i

Predictions:

* Type of environment: outdoor
« Semantic categories: skyscraper:0.69, tower:0.16, office_building:0.11,

* SUN scene attributes: man-made, vertical components, natural light, open area, nohorizon, glossy, metal, wire, B Zhou et a I N I PS 1 4
clouds, far-away horizon


http://places.csail.mit.edu/

Visual Style Recognition

Karayev et al. Recognizing Image Style. BMVC14. Caffe fine-tuning example.
Demo online at http://demo.vislab.berkeleyvision.org/ (see Results Explorer).

Ether§al DR Melanch(_)_ly Minimal Other Styles:

P
A

[ Image-Style]

Vintage

Long Exposure
Noir

Pastel

Macro

... and so on.



http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/

Object Detection

R-CNNs: Region-based Convolutional Networks

- . Outputs: bbox
-{Deep N\ softmax regressor
ConvNet| | \) bl :

Rol
pooling

Fast R-CNN

- convolve once
- project + detect

¥L—|Rol
B P<—|={projection\_

I Conv "’“_ Rol feature
Faster R-CNN feature map NECIOr & oot o
- end-to-end proposals and detection
- image inference in 200 ms
- Region Proposal Net + Fast R-CNN
papers + code online Ross Girshick, Shaoqing Ren,

Kaiming He, Jian Sun


https://github.com/rbgirshick/fast-rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://arxiv.org/pdf/1504.08083v1.pdf

Pixelwise Prediction

Fully convolutional networks for pixel prediction
in particular semantic segmentation

- end-to-end learning

- efficient inference and learning
100 ms per-image prediction

- multi-modal, multi-task

Applications
- semantic segmentation
- denaoising
- depth estimation
- optical flow

CVPR'15 paper and code + models

forward/inference

<

_ backward /learning

Jon Long* & Evan Shelhamer?,
Trevor Darrell. CVPR’15 20


http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
http://fcn.berkeleyvision.org

Visual Sequence Tasks

Activity Recognition

Input:
Sequence
of Frames

=

Apply Eye Mskeup

Image Description

Output:
Sentence

[ A][1arge || building |[ with |[a]

[ clock |[on |[the |[ front || of |[it |

Video Description

Input:
:‘ .~ I " PN -

Output:
Sentence

lzll man H juiced H the || orange

Jeff Donahue et al. CVPR’15 21




Recurrent Networks for Sequences

r

Recurrent Nets and Long Short Term Memories (LSTM)
are sequential models

- video
- language
- dynamics

learned by backpropagation through time

............

LRCN: Long-term Recurrent Convolutional Network LRCN:
recurrent + convolutional

- activity recognition (sequence-in) for visual sequences

- image captioning (sequence-out)
- video captioning (sequence-to-sequence)

CVPR'15 paper and code + models 22



http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
http://jeffdonahue.com/lrcn/

Deep Visuomotor Control

real time

example experiments

Policy Inp conv3 (blue) + softmax (white)
olicy Input feature 1 of 32

feature visualization

Sergey Levine* & Chelsea Finn?,
Trevor Datrrell, and Pieter Abbeel

23


http://www.youtube.com/watch?v=oTfGzObMqQI
http://www.youtube.com/watch?v=RgQEA9LFWjQ

Deep Visuomotor Control Architecture

conv3 spatial softmax feature motor

points torques
X, 32 filters %32 distributi

fully fully fully n"‘
expected connected connected connected . ]
2D position RelU RelLU linear ¢

,ﬂ €

Lo robot
configuration o
39

7x7 conv
stride 2
RelLU

5x5 conv
ReLU

{240

- multimodal (images & robot configuration)

- runs at 20 Hz - mixed GPU & CPU
for real-time control

. . Sergey Levine* & Chelsea Finn?,
paper + code for guided policy search Trevor Darrell, and Pieter Abbeel 24


http://arxiv.org/abs/1504.00702
http://rll.berkeley.edu/gps/

Embedded Caffe

Caffe runs on embedded CUDA hardware and mobile devices

- same model weights,
same framework interface

- out-of-the-box on
CUDA platforms

- in-progress OpenCL port
thanks Fabian Tschopp! CUDA Jetson TX1, TK1

+ AMD, Intel, and the community

- community Android port
thanks sh1rQ!

_

Q€S A
& a

OpenCL branch

Android lib, demo

25


http://www.nvidia.com/object/jetson-tx1-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://github.com/sh1r0/caffe-android-lib
https://github.com/sh1r0/caffe-android-demo
https://github.com/BVLC/caffe/tree/opencl

Caffeinated Companies

m @ ... startups, big companies, more ...

26



Caffe at Facebook

- in production for vision at scale:
uploaded photos run through Caffe

- Automatic Alt Text for the blind

- On This Day for surfacing memories
- objectionable content detection

- contributing back to the community:

inference tuning, tools, code review
include fb-caffe-exts thanks Andrew!

On This Day
highlight content

Automatic Alt Text
recognize photo content
for accessibility

[example credit Facebook]

27


https://github.com/facebook/fb-caffe-exts

Caffe at Pinterest

- in production for vision at scale: 20 Examples Of Minimal Interior

Design #15

uploaded photos run through Caffe
- deep learning for visual search:

retrieval over billions of images

in <250 ms

- ~4 million requests/day

- built on an open platform of
Caffe, FLANN, Thrift, ...

[example credit Andrew Zhai, Pinterest] 28



Caffe at Adobe

Helvetica Bold 120 pt v g
Fxl:um Add fonts from Typekit: (1]
- training networks for research g A B
. . . . | Sans Serif ample
in vision and graphics L osen < sme
! Monospace id T Sample
] ] ! gzz::::“ jular () Sample
- custom inference in products, . G Sumn
©7 Gill Sans MT Bold () Sample

includi ng PhOtOShOp ¥7 Gill Sans MT Bold ltalc (O Sample

1.7 Gloucester MT Extra Condensed Regular O Sample

77 Goudy Old Style Italic O  Sample
77 Goudy Old Style Regular () Sample
77 Goudy Old Style Bold () Sample

Photoshop Type Similarity
catalogue typefaces automatically



Caffe at Yahoo! Japan

- curate news and restaurant
photos for recommendation

- arrange user photo albums

News Image Recommendation
select and crop images for news

30



Classification

instant recognition the Caffe way
see notebook



http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb

Convolutional Network

Feature maps
* Feed-forward: ﬁ
— Convolve input "
— Non-linearity (rectified linear) | Pooling

— Pooling (local max)
* Supervised

* Train convolutional filters by
back-propagating classification error

wimions,_ LeCunetal 1998 ﬁ

$2:1, meps
E@14x14

INPUT

C1: feature maps
6@228

Input Image ]

Slide: R. Fergus



Convolutional Networks: 1989

C3:f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
30%32 6@28x28

S2:1. maps
6@14x14

I
Full conrlection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

LeNet: a layered model composed of convolution and
subsampling operations followed by a holistic representation
and ultimately a classifier for handwritten digits. [ LeNet ]



Convolutional Nets: 2012

N
k!
48
» 5
5.“‘.
R
11}
55
a1
2244listrid
“of 4
3 48

Max
pooling

Y |27

AlexNet: a layered model composed of convolution,

subsampling, and further operations followed by a holistic

representation and all-in-all a landmark classifier on

ILSVRC12. [ AlexNet ]

K
w e g
st 192 192 128 2048 \/ Joas \dense
Y 13 3 13
3 .
jf L 1= 13 dense’| |dense
3 ‘ 1000
192 192 128 Max ..} ]
Max pooling 2048 2048
pooling
+ data
+gpu

+ non-saturating nonlinearity
+ regularization



Convolutional Nets: 2014

Y 9
g 38g35ile
WA A\ st
g g8g8%d
2 ﬁﬂﬁ%@% %}% %%g 2
g 3 giges ud U0 1
aﬁ_@ %%%%@ %’% m%“ \ }catenation
D
@%“a%“ %% Q% Q 3x3 convolutions 5x5 convolutions 1x1 convolutions

ILSVRC14 Winners: ~6.6% Top-5 error ek

GooglLeNet: composition of multi-scale + depth
dimension-reduced modules (pictured) + data
- VGG: 16 layers of 3x3 convolution interleaved with + dimensionality reduction

max pooling + 3 fully-connected layers



Learning LeNet

back to the future of visual recognition
see notebook



http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/01-learning-lenet.ipynb

Deep Learning, as it is executed...

What should a framework handle?

Compositional Models

Decompose the problem and code!
End-to-End Learning

Configure and solve!
Many Architectures and Tasks

Define, experiment, and extend!



Net

e Anetwork is a set of layers
and their connections:

name: "dummy-net"

layer { name: "data" ..}
layer { name: "conv" ..}
layer { name: "pool" ..}

. more layers ..

layer { name: "loss" ..}

e C(Caffe creates and checks the net from
the definition.

e Data and derivatives flow through the
net as blobs — an array interface

LogReg 1

LeNet —

ImageNet, Krizhevsky 2012 —



Forward / Backward the essential Net computations

Forward:
inference f w (IE)

“espresso”
+ loss

Backward:
Vfw(:l?) learning

Caffe models are complete machine learning systems for inference and learning.
The computation follows from the model definition. Define the model and run.



DAG

Many current deep models
have linear structure

but Caffe nets can have any
directed acyclic graph (DAG)
structure.

Define bottoms and tops
and Caffe will connect the net. LRCN joint vision-sequence model



Layer Protocol

Setup: run once for initialization.
Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Reshape: set dimensions.

Compositional Modeling
The Net’s forward and backward passes
are composed of the layers’ steps.

Laver Development Checklist



https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers

import caffe

et Layer Protocol

class EuclideanLoss(caffe.lLayer):

def seup(self bottlom, top): —— CIaSS Inte rfaCe

if len(bottom)
raise Excepti on( 'Need two inputs to compute distance.")

Define a class in C++ or Python to
extend Layer.

def resnape(self- bottom, top)

if bottom[e] count = bottom[l] count:
raise Exceotmn( '‘Inputs must have the same dimension.")

f 1nputs

self dlff “np zeros llxe(bottom[e] data, dtype=np.float32) InCIUde your new Iayer type |n a
fogiiovechapdld] network and keep brewing.

def forward(self, bottom, top):
self.diff[...] = bottom[@].data - bottom[1].data
top[@].data[...] = np.sum(self.diff**2) / bottom{8].num / 2.

layer {
type: "Python"

def backward(self, top, propagate_down, bottom):

for i in range(2): python param {
if not propagate_down[i]: -
continue module: " layers "
if i == @: .
e layer: "EuclideanLoss"
else: } }
sign = -1

bottom[i].diff[...] = sign * self.diff / bottom[i].num



Blob

Blobs are N-D arrays for storing and
communicating information.
e hold data, derivatives, and parameters
e |azily allocate memory
e shuttle between CPU and GPU

Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution Bias
96 x 1 x 1 x 1 for CaffeNet conv1

name: "convl"
type: CONVOLUTION
bottom: "data"
top: '"convl"

. definition ..

top
blob

bottom
blob



Blob

Blobs provide a unified memory interface.

Reshape(num, channel, height, width)
- declare dimensions

- make SyncedMem -- but only lazily
allocate I
cpu_data(), mutable_cpu_data() SyncedMem
- host memory for CPU mode allocation + communication
gpu_data(), mutable_gpu_data()
- device memory for GPU mode l

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()
- derivative counterparts to data methods
- easy access to data + diff in forward / backward




Loss

What kind of model is this?

Define the task by the loss.

Classification
SoftmaxWithLoss
Hingeloss

Linear Regression
EuclideanLoss

Attributes / Multiclassification
SigmoidCrossEntropyLoss

Others...

New Task

NewlL.oss



Protobuf Model Format

name: '"convl"
Strongly typed format fype: "Convolution
- Auto-generates code bottom: "data"
_ top: '"convl"
Dev_eloped by Google convolution param {
- Defines Net / Layer / Solver num_output: 20
. k 1 si :
schemas in caffe.proto ernel_size: o
stride: 1
welight filler ({

message ConvolutionParameter {
type: "xavier"

optional uint32 num_output = 1; }

optional bool bias_term = 2 [default = true];

}



Model Zoo Format

[¢] readme.md Raw

name: FCN-32s Fully Convolutional Semantic Segmentation on PASCAL-Context caffemodel: fcn-
32s-pascalcontext.caffemodel caffemodel_url: http://dl.caffe.berkeleyvision.org/fcn-32s-
pascalcontext.caffemodel shal: adbbd504c280e2b8966fc32e32ada2a2ecf13603

gist_id: 80667189b218ad570e82

This is a model from the paper:

Fully Convolutional Networks for Semantic Segmentation
Jonathan Long, Evan Shelhamer, Trevor Darrell
arXiv:1411.4038

Gists on github hold model definition, license, url for weights, and
hash of Caffe commit that guarantees compatibility.



Solving: Training a Net

Optimization like model definition is configuration.
train net: "lenet train.prototxt”
base 1r: 0.01

momentum: 0.9

weight decay: 0.0005

max iter: 10000

_ All you need to run things
snapshot prefix: "lenet snapshot” on the GPU

l

> caffe train -solver lenet_solver.prototxt[—gpu O]

Stochastic Gradient Descent (SGD) + momentum -
Adaptive Gradient (ADAGRAD) - Nesterov’s Accelerated Gradient (NAG)



Solver Showdown: MNIST Autoencoder

AdaGrad

10901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627
10901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set
10901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217

10901 13:36:33.019356 24952 solver.cpp:302] Test net output #0: cross_entropy_loss = 63.217 (* 1 = 63.217 loss)
10901 13:36:33.019773 24952 solver.cpp:302] Test net output #1: 12_error = 2.40951

10901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498
10901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#@) # train set
10901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301

10901 13:35:22.780138 20072 solver.cpp:302] Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss)
10901 13:35:22.780146 20072 solver.cpp:302] Test net output #1: 12_error = 2.02321
Nesterov

10901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389

10901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#@) # train set

10901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663

10901 13:36:55.068410 22488 solver.cpp:302] Test net output #0: cross_entropy_loss = 59.3663 (* 1 = 59.3663 loss)
10901 13:36:55.068418 22488 solver.cpp:302] Test net output #1: 12 _error = 1.79998



layer: {

. . name: 'innerproductl'
We I g ht S h a rl n g type: INNER PRODUCT
inner product param {
num output: 10

bias term: false
weight filler ({

e Just give the parameter

std: 10

blobs explicit names .

param: 'sharedweights'

using the param field potcon: tdatal
e Layers specifying the laver: |

name: 'innerproduct2'

same param name W|” type: INNER PRODUCT

inner product param {

share that parameter, bias term: talse
}

accumulating gradients param: 'sharedueights'
accordingly |

top: 'innerproduct2?'



Recipe for Brewing

e Convert the data to Caffe-format
o Imdb, leveldb, hdf5 / .mat, list of images, etc.

e Define the Net
e Configure the Solver
e caffe train -solver solver.prototxt

e Examples are your friends
o caffe/examples/mnist,cifarl0, imagenet
o caffe/examples/*.ipynb
o caffe/models/*



Brewing Models

from logistic regression to non-linearity
see notebook



http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/brewing-logreg.ipynb

Take a pre-trained model and fine-tune to new tasks
[DeCAF] [Zeiler-Fergus] [OverFeat]

Lots of Data

Style
Recognition

Dogs vs.
Cats

top 10 in
10 minutes

A AER

+ image by Andrej Karpathy

Your Task

© kagiel:om



From ImageNet to Style

Simply change a few lines in the model definition

layer { layer {
name: "data" name: "data"
type: "Data" type: "Data"
data param { data param {
[source: "ilsvrclZ train Imdb" source: "style train lmdb" )

mean file: "../../data/ilsvrclz"

mean file: "../../data/ilsvrcl2"

} }

layer { layer {

[name: "fc8" name: "fc8-style" | —
type: "InnerProduct" type: "InnerProduct" new name

inner_ product_param {
(Mum_output: 1000

inner_product_param { NEW params
num output: 20 |

} }
} }

Input:
A different source

Last Layer:
A different classifier



From ImageNet to Style

> caffe train -solver models/finetune flickr style/solver.prototxt

-welghts bvlc reference caffenet.caffemodel

Step-by-step in pycaffe:
pretrained net = caffe.Net (
"net.prototxt", "net.caffemodel")

solver = caffe.SGDSolver ("solver.prototxt")

HDR  Melancholy Minimal

solver.net.copy from(pretrained net)

solver.solve ()

Vintage




Fine-tuning

transferring features to style recognition
see notebook



http://nbviewer.ipython.org/github/BVLC/caffe/blob/tutorial/examples/03-fine-tuning.ipynb

When to Fine-tune?

A good first step

- More robust optimization — good initialization helps
- Needs less data 75
- Faster learning 70
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Fine-tuning Tricks

Learn the last layer first

- Caffe layers have local learning rates: param { lr mult: 1 }
- Freeze all but the last layer for fast optimization

and avoiding early divergence by setting 1r mult: O

to fix a parameter.
- Stop if good enough, or keep fine-tuning

Reduce the learning rate

- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid divergence

Do net surgery see notebook on editing model parameters



http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb

Transferability of Features
Yosinski et al. NIPS 2014

5: Transfer + fine-tuning improves generalization

0.64}
3: Fine-tuning recovers co-adapted interactions

0.62f

2: Performance drops
due to fragile
co-adaptation

4: Performance

drops due to
representation
specificity

0.60f

0.58}

Top-1 accuracy (higher is better)

0.56f

0.54

0 1 2 3 4 5 6 7
Layer n at which network is chopped and retrained



After fine-tuning

- Supervised pre-training does not overfit
- Representation is (mostly) distributed
- Sparsity comes “for free” in deep representation
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Editing model parameters

how to do net surgery to set custom weights
see notebook



http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb

Up Next The Latest Roast

Detection

Outputs: bbox
softmax regressor

A FC

Rol feature
vector For each Rol

Pixelwise Prediction

forward /inference

_ backward/learning
<

Framework Future

T/
\N)‘IN
O)\T | N/>


http://fcn.berkeleyvision.org
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-sequences.pdf
http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-improving.pdf

Detection

Fast R-CNN

- convolve once
- project + detect

- Outputs: bbox
Deep \ softmax regressor
ConvNet| | \\ = !

Rol

pooling
layer

Conv X Rol feature
feature map vector For each Rol

Faster R-CNN

- end-to-end proposals and detection

- 200 ms /image inference

- fully convolutional Region Proposal Net
+ Fast R-CNN

arXiv and code for Fast R-CNN Ross Girshick, Shaoging Ren,
Kaiming He, Jian Sun


http://arxiv.org/abs/1504.08083
https://github.com/rbgirshick/fast-rcnn

Pixelwise Prediction

Fully convolutional networks for pixel prediction
applied to semantic segmentation

- end-to-end learning

- efficient inference and learning
150 ms per-image prediction

- multi-modal, multi-task

Further applications
- depth
- boundaries
- flow + more

CVPR15 arXiv and reference models + code

forward/inference

<

_ backward /learning

Jon Long* & Evan Shelhamer*,
Trevor Darrell


http://arxiv.org/abs/1411.4038
http://fcn.berkeleyvision.org

Sequences

Recurrent Net and Long Short Term Memory LSTM
are sequential models

- video

- language

- dynamics
learned by backpropagation through time.

LRCN: Long-term Recurrent Convolutional Network
- activity recognition
- image captioning
- video captioning

A group of young men playing a game of

CVPR15 arXiv and project site soccer.

Jeff Donahue et al.


http://arxiv.org/abs/1411.4389
http://jeffdonahue.com/lrcn/

Framework Future

1.0 Is coming stability, documentation, packaging
Performance Tuning for GPU (cuDNN v5) and CPU (nnpack)
In-progress Ports for OpenCL and Windows

Halide interface for prototyping and experimenting

Widening the Circle continued and closer collaborative development
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Next Steps

Now you've seen the progress made with

DIY deep learning and the democratization of models

Next Up:
O
\N N/
A A
o) T N
caffe.berkeleyvision.or

github.com/BVLC/caffe
Check out Caffe on github

dcker

Run Caffe through Docker
and NVIDIA Docker for GPU

Join the caffe-users mailing list
67



https://groups.google.com/forum/#!forum/caffe-users
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/tree/master/docker

Help Brewing

Documentation
- tutorial documentation

- hands-on examples

Modeling, Usage, and
Installation

- caffe-users group

- qitter.im chat

Convolutional Nets
- CS231n online convnet class
by Andrej Karpathy and
Fei-Fei Li

- Deep Learning Online
by Michael Nielsen

- Deep Learning Book
by Goodfellow, Bengio,
Courville

68


http://caffe.berkeleyvision.org/tutorial/
http://caffe.berkeleyvision.org/#notebook-examples
https://groups.google.com/forum/#!forum/caffe-users
https://gitter.im/BVLC/caffe
http://vision.stanford.edu/teaching/cs231n/index.html
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Thanks to the Caffe Crew

%0 Uy,
60 l)o

SN =
LR

...plus the cold-brew

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Jonathan Long,
Sergey Karayev, Ross Girshick, Sergio Guadarrama, Ronghang Hu, Trevor Darrell

and our open source contributors!

69


https://github.com/BVLC/caffe/graphs/contributors
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Why Deep Learning?

The Unreasonable Effectiveness of Deep Features

® o o 8 @ -]
dog bird invertebrate vehicle good, covering building
commeodity

Low-level: Pool4 High-level: FC¢

Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]



Why Deep Learning?

The Unreasonable Effectiveness of Deep Features

Maximal activations of pool, units [R-CNN]

conv, DeConv visualization

Rich visual structure of features deep in hierarchy. Zeiler-Fergus]



Why Deep Learning?

The Unreasonable Effectiveness of Deep Features
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image patches that strongly activate 1st layer filters [Zeiler-Fergus]




