# **DIY Deep Learning for Vision:** a Hands-On Tutorial with Caffe

|  | Maximally accurate Maximally specific |  |         | N                        |
|--|---------------------------------------|--|---------|--------------------------|
|  | espresso                              |  | 2.23192 | O N N                    |
|  | coffee                                |  | 2.19914 | caffe.berkeleyvision.org |
|  | beverage                              |  | 1.93214 |                          |
|  | liquid                                |  | 1.89367 |                          |
|  | fluid                                 |  | 1.85519 |                          |



Look for further details in the outline notes

#### Evan Shelhamer, Jeff Donahue, Jon Long, Yangqing Jia, and Ross Girshick



BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

# **Tutorial Schedule**

Caffe tour and latest roast

## **Caffe Tour**

- the why and how of Caffe
- highlight reel of examples + applications
- do-it-yourself notebooks

## Latest Roast

- detection Ross Girshick
- <u>sequences and vision</u> + language *Jeff Donahue*
- pixelwise prediction Jon Long and Evan Shelhamer
- framework future Yangqing Jia

## Why Deep Learning? End-to-End Learning for Many Tasks

Hidden

Output









# What is Deep Learning?

## Compositional Models Learned End-to-End

## **Hierarchy of Representations**

- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word





figure credit Yann LeCun, ICML '13 tutorial

# What is Deep Learning?

## Compositional Models Learned End-to-End

**Back-propagation** jointly learns all of the model parameters to optimize the output for the task.



figure credit Yann LeCun, ICML '13 tutorial



IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

#### xkcd: Tasks

### "The Virtually Impossible"



#### EXAMPLE PHOTOS







# PARK or BIRD

Want to know if your photo is from a U.S. national park? Want to know if it contains a bird? Just drag it into the box to the left, and we'll tell you. We'll use the GPS embedded in your photo (if it's there) to see whether it's from a park, and we'll use our super-cool computer vision skills to try to see whether it's a bird (which is a hard problem, but we do a pretty good job at it).

To try it out, just drag any photo from your desktop into the upload box, or try dragging any of our example images. We'll give you your answers below!

Want to know more about PARK or BIRD, including why the heck we did this? Just click here for more info  $\rightarrow$  (3)



Ah yes, Everglades is truly beautiful.



Dude, that is such a bird.

Photo credits



#### All in a day's work with Caffe

http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/

# What is Caffe?

# **Open framework, models, and worked examples** for deep learning

- 4.5 years old
- 7,000+ citations, 250+ contributors, 24,000+ stars
- 15,000+ forks, >1 pull request / day average at peak
- focus has been vision, but also handles sequences, reinforcement learning, speech + text







Prototype

# What is Caffe?

**Open framework, models, and worked examples** for deep learning

- Pure C++ / CUDA library for deep learning
- Command line, Python, MATLAB interfaces
- Fast, well-tested code
- Tools, reference models, demos, and recipes
- Seamless switch between CPU and GPU







Prototype

## Caffe is a Community



| BVLC / caffe                       | O Unwatch -                  | 1,205            | ★ Unstar | 8,498 | % Fork | 4,821        |        |
|------------------------------------|------------------------------|------------------|----------|-------|--------|--------------|--------|
| January 19, 2016 – February 19,    | 2016                         |                  |          |       |        | Period: 1 mo | onth + |
| Overview                           |                              |                  |          |       |        |              |        |
| 45 Active Pull Requests            |                              | 90 Active Issues |          |       |        |              |        |
| · · · · · ·                        | 80.00                        |                  |          |       |        |              |        |
| <b>122</b><br>Merged Pull Requests | 23<br>Proposed Pull Requests | Closed Issues    |          |       |        | 38<br>Issues |        |

Excluding merges, **20 authors** have pushed **19 commits** to master and **53 commits** to all branches. On master, **44 files** have changed and there have been **2,268 additions** and **162 deletions**.



# **Reference Models**

#### AlexNet: ImageNet Classification





# GoogLeNet: ILSVRC14 winner

## Caffe offers the

- model definitions
- optimization settings
- pre-trained weights

so you can start right away.

The BVLC models are licensed for unrestricted use.

The community shares models in our <u>Model Zoo</u>.

# **Open Model Collection**

The Caffe Model Zoo open collection of deep models to share innovation

- MSRA ResNet ILSVRC15 winner in the zoo
- VGG ILSVRC14 + Devil models in the zoo
- MIT Places scene recognition model in the zoo
- Network-in-Network / CCCP model in the zoo

helps disseminate and reproduce research bundled tools for loading and publishing models **Share Your Models!** with your citation + license of course

# Brewing by the Numbers...

Speed with Krizhevsky's 2012 model:

- 2 ms/image on K40 GPU
- <1 ms inference with Caffe + cuDNN v4 on Titan X
- 72 million images/day with batched IO
- 8-core CPU: ~20 ms/image Intel optimization in progress

9k lines of C++ code (20k with tests)



# CAFFE EXAMPLES + APPLICATIONS

# Share a Sip of Brewed Models

demo.caffe.berkeleyvision.org

demo code open-source and bundled



| Maximally accurate | Maximally specific |         |
|--------------------|--------------------|---------|
| cat                |                    | 1.80727 |
| domestic cat       |                    | 1.74727 |
| feline             |                    | 1.72787 |
| tabby              |                    | 0.99133 |
| domestic animal    |                    | 0.78542 |

# Scene Recognition <a href="http://places.csail.mit.edu/">http://places.csail.mit.edu/</a>



#### Predictions:

- · Type of environment: outdoor
- Semantic categories: skyscraper:0.69, tower:0.16, office\_building:0.11,
- SUN scene attributes: man-made, vertical components, natural light, open area, nohorizon, glossy, metal, wire, clouds, far-away horizon

B. Zhou et al. NIPS 14

# Visual Style Recognition

Karayev et al. *Recognizing Image Style*. BMVC14. Caffe fine-tuning example. Demo online at <u>http://demo.vislab.berkeleyvision.org/</u> (see Results Explorer).



[Image-Style]

# **Object Detection**

R-CNNs: Region-based Convolutional Networks

#### Fast R-CNN

- convolve once
- project + detect



#### Faster R-CNN

- end-to-end proposals and detection
- image inference in 200 ms
- Region Proposal Net + Fast R-CNN

papers + code online

Ross Girshick, Shaoqing Ren, Kaiming He, Jian Sun

# **Pixelwise Prediction**

Fully convolutional networks for pixel prediction in particular semantic segmentation

- end-to-end learning
- efficient inference and learning 100 ms per-image prediction
- multi-modal, multi-task

Applications

- semantic segmentation
- denoising
- depth estimation
- optical flow

CVPR'15 paper and code + models





Jon Long\* & Evan Shelhamer\*, Trevor Darrell. CVPR'15 20

# **Visual Sequence Tasks**



# **Recurrent Networks for Sequences**

Recurrent Nets and Long Short Term Memories (LSTM) are sequential models

- video
- language
- dynamics

learned by backpropagation through time

LRCN: Long-term Recurrent Convolutional Network

- activity recognition (sequence-in)
- image captioning (sequence-out)
- video captioning (sequence-to-sequence)



LRCN:

recurrent + convolutional for visual sequences

CVPR'15 paper and code + models

## **Deep Visuomotor Control**





#### example experiments

#### feature visualization

Sergey Levine\* & Chelsea Finn\*, Trevor Darrell, and Pieter Abbeel 23

# **Deep Visuomotor Control Architecture**



- multimodal (images & robot configuration)
- runs at 20 Hz mixed GPU & CPU for real-time control

paper + code for guided policy search

Sergey Levine\* & Chelsea Finn\*, Trevor Darrell, and Pieter Abbeel 24

## **Embedded Caffe**

Caffe runs on embedded CUDA hardware and mobile devices

- same model weights, same framework interface
- out-of-the-box on CUDA platforms
- in-progress OpenCL port thanks Fabian Tschopp!
  + AMD, Intel, and the community
- community Android port thanks sh1r0!



CUDA Jetson TX1, TK1



OpenCL branch



Android <u>lib</u>, <u>demo</u>

# **Caffeinated Companies**





... startups, big companies, more ...

# **Caffe at Facebook**

- in production for vision at scale: uploaded photos run through Caffe
- Automatic Alt Text for the blind
- On This Day for surfacing memories
- objectionable content detection
- contributing back to the community: inference tuning, tools, code review include <u>fb-caffe-exts</u> thanks Andrew!



On This Day highlight content Automatic Alt Text recognize photo content for accessibility

# Caffe at Pinterest

- in production for vision at scale: uploaded photos run through Caffe
- deep learning for visual search: retrieval over billions of images in < 250 ms
- ~4 million requests/day
- built on an open platform of Caffe, FLANN, Thrift, ...





Cord Chandelier

by Brendan Ravenhill \$1.699 FREE SHIPPING above \$75\* (

Black

Eab com

\$1699

**Cord Chandelier Black** 

# Caffe at Adobe

- training networks for research in vision and graphics
- custom inference in products, including Photoshop

| Helvetic   | a Bold                                |           | Bold |        | $\mathbf{T}_{\mathrm{T}}$ | 120 pt      |       | aa      | Crisp |  |
|------------|---------------------------------------|-----------|------|--------|---------------------------|-------------|-------|---------|-------|--|
| Filte      | All Classes                           | - TK      | * ~  | =      |                           | Add fonts f | rom T | ypekit: | Tk    |  |
|            | Serif                                 | ld        |      |        | T                         | Sample      |       |         |       |  |
|            | Slab Serif                            | Id Italic |      |        | T                         | Sample      |       |         |       |  |
| •          | Sans Serif                            |           |      |        | Tr                        | Sample      |       |         |       |  |
| •          | Script<br>Blackletter                 | ilic      |      |        | T                         | Sample      |       |         |       |  |
| •          | Monospace                             | Id        |      |        | Tr                        | Sampl       | e     |         |       |  |
| <b>5</b> 0 | Handwritten                           | jular     |      |        | 0                         | Sample      |       |         |       |  |
| 1          | Decorative                            | lc        |      |        | 0                         | Sample      |       |         |       |  |
| \$         | Gill Sans MT Bold                     |           |      |        | 0                         | Sample      |       |         |       |  |
| 公          | Gill Sans MT Bold Italic              |           |      | 0      | Sample                    |             |       |         |       |  |
|            | Gloucester MT Extra Condensed Regular |           |      | egular | 0                         | Sample      |       |         |       |  |
| \$         | Goudy Old Style Italic                |           | 0    | Sample |                           |             |       |         |       |  |
| \$2        | Goudy Old Style Regular               |           |      | 0      | Sample                    |             |       |         |       |  |
| ŵ          | Goudy Old Style Bold                  |           |      |        | 0                         | Sample      |       |         |       |  |

Photoshop Type Similarity catalogue typefaces automatically

# Caffe at Yahoo! Japan

- curate news and restaurant photos for recommendation
- arrange user photo albums



**News Image Recommendation** select and crop images for news

# Classification

instant recognition the Caffe way see notebook

# **Convolutional Network**

- Feed-forward:
  - Convolve input
  - Non-linearity (rectified linear)
  - Pooling (local max)
- Supervised
- Train convolutional filters by back-propagating classification error



Feature maps Pooling Non-linearity Convolution (Learned)

Slide: R. Fergus

## **Convolutional Networks: 1989**



LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [LeNet]

## Convolutional Nets: 2012



AlexNet: a layered model composed of convolution, subsampling, and further operations followed by a holistic representation and all-in-all a landmark classifier on ILSVRC12. [AlexNet]

- + data
- + gpu
- + non-saturating nonlinearity
- + regularization



# Learning LeNet

back to the future of visual recognition see notebook
#### Deep Learning, as it is executed...

What should a framework handle?

Compositional Models Decompose the problem and code! End-to-End Learning Configure and solve! Many Architectures and Tasks Define, experiment, and extend!

# Net

- A network is a set of layers and their connections:
  - name: "dummy-net"
  - layer { name: "data" ...}
  - layer { name: "conv" ...}
  - layer { name: "pool" ...}
    - ... more layers ...

layer { name: "loss" ...}

- Caffe creates and checks the net from the definition.
- Data and derivatives flow through the net as *blobs* an array interface



### Forward / Backward the essential Net computations

Forward: 
$$f_W(x)$$





"espresso" + loss

$$abla f_W(x)$$
 Backward:  
learning

Caffe models are complete machine learning systems for inference and learning. The computation follows from the model definition. Define the model and run.

# DAG



#### SDS two-stream net



#### GoogLeNet Inception Module



LRCN joint vision-sequence model

# Many current deep models have linear structure



# but Caffe nets can have any directed acyclic graph (DAG) structure.

Define bottoms and tops and Caffe will connect the net.

### Layer Protocol

Setup: run once for initialization.

Forward: make output given input.

#### Backward: make gradient of output

- w.r.t. bottom
- w.r.t. parameters (if needed)

Reshape: set dimensions.

*Compositional Modeling* The Net's forward and backward passes are composed of the layers' steps.





```
import caffe
import numpy as np
```

```
class EuclideanLoss(caffe.Layer):
```

```
def setup(self, bottom, top):
    # check input pair
    if len(bottom) != 2:
        raise Exception("Need two inputs to compute distance.")
```

```
def reshape(self, bottom, top):
    # check input dimensions match
    if bottom[0].count != bottom[1].count:
        raise Exception("Inputs must have the same dimension.")
    # difference is shape of inputs
    self.diff = np.zeros_like(bottom[0].data, dtype=np.float32)
    # loss output is scalar
    top[0].reshape(1)
```

```
def forward(self, bottom, top):
    self.diff[...] = bottom[0].data - bottom[1].data
    top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2.
```

```
def backward(self, top, propagate_down, bottom):
    for i in range(2):
        if not propagate_down[i]:
            continue
        if i == 0:
            sign = 1
        else:
            sign = -1
        bottom[i].diff[...] = sign * self.diff / bottom[i].num
```

# Layer Protocol == Class Interface

Define a class in C++ or Python to extend Layer.

Include your new layer type in a network and keep brewing.

```
layer {
type: "Python"
python_param {
  module: "layers"
  layer: "EuclideanLoss"
} }
```

# Blob

Blobs are N-D arrays for storing and communicating information.

- hold data, derivatives, and parameters
- lazily allocate memory
- shuttle between CPU and GPU



Data

Number x K Channel x Height x Width 256 x 3 x 227 x 227 for ImageNet train input



**Parameter: Convolution Weight** *N* Output x *K* Input x *H*eight x *W*idth 96 x 3 x 11 x 11 for CaffeNet conv1 name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
... definition ...
fon





Parameter: Convolution Bias 96 x 1 x 1 x 1 for CaffeNet conv1

### Blob

Blobs provide a unified memory interface.



#### Reshape(num, channel, height, width)

- declare dimensions
- make SyncedMem -- but only lazily allocate

#### cpu\_data(), mutable\_cpu\_data()

- host memory for CPU mode gpu\_data(), mutable\_gpu\_data()
- device memory for GPU mode

#### {cpu,gpu}\_diff(), mutable\_{cpu,gpu}\_diff()

- derivative counterparts to data methods
- easy access to data + diff in forward / backward





### Loss



Classification SoftmaxWithLoss HingeLoss

#### Linear Regression EuclideanLoss

#### Attributes / Multiclassification SigmoidCrossEntropyLoss

Others...

New Task NewLoss

Define the task by the **loss**.

# Protobuf Model Format

- Strongly typed format
- Auto-generates code
- Developed by Google
- Defines Net / Layer / Solver schemas in caffe.proto

```
message ConvolutionParameter {
    // The number of outputs for the layer
    optional uint32 num_output = 1;
    // whether to have bias terms
    optional bool bias_term = 2 [default = true];
```

```
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution param {
    num output: 20
    kernel size: 5
    stride: 1
    weight filler {
        type: "xavier"
```

## Model Zoo Format

• readme.md

name: FCN-32s Fully Convolutional Semantic Segmentation on PASCAL-Context caffemodel: fcn-32s-pascalcontext.caffemodel caffemodel\_url: http://dl.caffe.berkeleyvision.org/fcn-32spascalcontext.caffemodel sha1: adbbd504c280e2b8966fc32e32ada2a2ecf13603

Raw

#### gist\_id: 80667189b218ad570e82

This is a model from the paper:

Fully Convolutional Networks for Semantic Segmentation Jonathan Long, Evan Shelhamer, Trevor Darrell arXiv:1411.4038

Gists on github hold model definition, license, url for weights, and hash of Caffe commit that guarantees compatibility.

# Solving: Training a Net

Optimization like model definition is configuration.

```
train net: "lenet train.prototxt"
base lr: 0.01
momentum: 0.9
weight decay: 0.0005
max iter: 10000
                                          All you need to run things
snapshot prefix: "lenet snapshot"
                                           on the GPU.
> caffe train -solver lenet solver.prototxt -gpu 0
```

Stochastic Gradient Descent (SGD) + momentum · Adaptive Gradient (ADAGRAD) · Nesterov's Accelerated Gradient (NAG)

### Solver Showdown: MNIST Autoencoder

#### AdaGrad

I0901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627 I0901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set I0901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217 I0901 13:36:33.019356 24952 solver.cpp:302] Test net output #0: cross\_entropy\_loss = 63.217 (\* 1 = 63.217 loss) I0901 13:36:33.019773 24952 solver.cpp:302] Test net output #1: l2 error = 2.40951

#### SGD

I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498
I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set
I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301
I0901 13:35:22.780138 20072 solver.cpp:302] Test net output #0: cross\_entropy\_loss = 60.8301 (\* 1 = 60.8301 loss)
I0901 13:35:22.780146 20072 solver.cpp:302] Test net output #1: l2 error = 2.02321

#### Nesterov

I0901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389
I0901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#0) # train set
I0901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663
I0901 13:36:55.068410 22488 solver.cpp:302] Test net output #0: cross\_entropy\_loss = 59.3663 (\* 1 = 59.3663 loss)
I0901 13:36:55.068418 22488 solver.cpp:302] Test net output #1: l2\_error = 1.79998

# Weight Sharing

- Just give the parameter blobs explicit names using the param field
- Layers specifying the same param name will share that parameter, accumulating gradients accordingly

```
layer: {
  name: 'innerproduct1'
  type: INNER PRODUCT
  inner product param {
    num output: 10
    bias term: false
    weight filler {
      type: 'gaussian'
      std: 10
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct1'
laver: {
  name: 'innerproduct2'
 type: INNER PRODUCT
  inner product param {
    num output: 10
    bias term: false
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct2'
```

# **Recipe for Brewing**

- Convert the data to Caffe-format • Imdb, leveldb, hdf5 / .mat, list of images, etc.
- Define the Net
- Configure the Solver
- caffe train -solver solver.prototxt -gpu 0
- Examples are your friends
  - o caffe/examples/mnist,cifar10,imagenet
  - o caffe/examples/\*.ipynb
  - o caffe/models/\*

# **Brewing Models**

from logistic regression to non-linearity see notebook Take a pre-trained model and fine-tune to new tasks [DeCAF] [Zeiler-Fergus] [OverFeat]

#### Lots of Data



image by Andrej Karpathy



© kaggle.com

#### Style Recognition

Dogs vs. Cats top 10 in 10 minutes

Your Task

# From ImageNet to Style

#### Simply change a few lines in the model definition



# From ImageNet to Style

> caffe train -solver models/finetune\_flickr\_style/solver.prototxt
 -weights bvlc\_reference\_caffenet.caffemodel

```
Step-by-step in pycaffe:
    pretrained_net = caffe.Net(
        "net.prototxt", "net.caffemodel")
    solver = caffe.SGDSolver("solver.prototxt")
    solver.net.copy_from(pretrained_net)
    solver.solve()
```



# **Fine-tuning**

transferring features to style recognition see notebook

# When to Fine-tune?

A good first step

- More robust optimization good initialization helps
- Needs less data
- Faster learning

State-of-the-art results in

- recognition
- detection
- segmentation



[Zeiler-Fergus]

# **Fine-tuning Tricks**

#### Learn the last layer first

- Caffe layers have local learning rates: param { lr\_mult: 1 }
- Freeze all but the last layer for fast optimization and avoiding early divergence by setting lr\_mult: 0 to fix a parameter.
- Stop if good enough, or keep fine-tuning

#### Reduce the learning rate

- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid divergence

#### Do net surgery see notebook on <u>editing model parameters</u>

# **Transferability of Features**

#### Yosinski et al. NIPS 2014



# **After fine-tuning**

- Supervised pre-training does not overfit
- Representation is (mostly) distributed
- Sparsity comes "for free" in deep representation



# **Editing model parameters**

how to do net surgery to set custom weights see notebook

#### Up Next The Latest Roast

#### **Detection** Outputs: bbox Deep softmax regressor ConvNet FC Rol E FC pooling FCs layer Rol projection Rol feature Conv feature map vector For each Rol

#### **Sequences**



#### **Pixelwise Prediction**



#### **Framework Future**



# Detection

#### Fast R-CNN

- convolve once
- project + detect



#### Faster R-CNN

- end-to-end proposals and detection
- 200 ms / image inference
- fully convolutional Region Proposal Net
  - + Fast R-CNN

arXiv and code for Fast R-CNN

Ross Girshick, Shaoqing Ren, Kaiming He, Jian Sun

# **Pixelwise Prediction**

Fully convolutional networks for pixel prediction applied to semantic segmentation

- end-to-end learning
- efficient inference and learning
   150 ms per-image prediction
- multi-modal, multi-task

Further applications

- depth
- boundaries
- flow + more

CVPR15 <u>arXiv</u> and <u>reference models + code</u>





Jon Long\* & Evan Shelhamer\*, Trevor Darrell

### Sequences

Recurrent Net and Long Short Term Memory LSTM are sequential models

- video
- language
- dynamics

learned by backpropagation through time.

LRCN: Long-term Recurrent Convolutional Network

- activity recognition
- image captioning
- video captioning

CVPR15 arXiv and project site





A group of young men playing a game of soccer.

#### Jeff Donahue et al.

#### **Framework Future**

1.0 is coming stability, documentation, packaging

Performance Tuning for GPU (cuDNN v5) and CPU (nnpack)

In-progress Ports for OpenCL and Windows

Halide interface for prototyping and experimenting

Widening the Circle continued and closer collaborative development

#### **Next Steps**

Now you've seen the progress made with DIY deep learning and the democratization of models

#### Next Up:



caffe.berkeleyvision.org



Check out Caffe on github



**Run Caffe through Docker** and NVIDIA Docker for GPU Join the <u>caffe-users</u> mailing list

### **Help Brewing**

Documentation

- tutorial documentation
- hands-on examples

Modeling, Usage, and Installation

- caffe-users group
- gitter.im chat

#### **Convolutional Nets**

- <u>CS231n online convnet class</u> by Andrej Karpathy and Fei-Fei Li
- <u>Deep Learning Online</u> by Michael Nielsen
- <u>Deep Learning Book</u>
   by Goodfellow, Bengio,
   Courville

#### Thanks to the Caffe Crew



...plus the cold-brew

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Jonathan Long, Sergey Karayev, Ross Girshick, Sergio Guadarrama, Ronghang Hu, Trevor Darrell

and our open source contributors!

### Acknowledgements



Thank you to the Berkeley Vision and Learning Center and its Sponsors



Thank you to NVIDIA for GPUs, cuDNN collaboration, and hands-on cloud instances



Thank you to A9 and AWS for a research grant for Caffe dev and reproducible research



Thank you to our 150+ open source contributors and vibrant community!

### References

[DeCAF] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML, 2014.

[R-CNN] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014.

[Zeiler-Fergus] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. ECCV, 2014.

[LeNet] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 1998.

[AlexNet] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, 2012.

[OverFeat] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR, 2014.

[Image-Style] S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertzmann, H. Winnemoeller. Recognizing Image Style. BMVC, 2014.

[Karpathy14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. CVPR, 2014.

[Sutskever13] I. Sutskever. Training Recurrent Neural Networks.

PhD thesis, University of Toronto, 2013.

[ Chopra05 ] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. CVPR, 2005.

### END

### **MORE DETAILS**

### Why Deep Learning?

The Unreasonable Effectiveness of Deep Features



[DeCAF] [Zeiler-Fergus]

### Why Deep Learning?

The Unreasonable Effectiveness of Deep Features





conv<sub>5</sub> DeConv visualization [Zeiler-Fergus]

### Why Deep Learning?

The Unreasonable Effectiveness of Deep Features





1st layer filters

image patches that strongly activate 1st layer filters